Efficient Learning using Forward-Backward Splitting
نویسندگان
چکیده
We describe, analyze, and experiment with a new framework for empirical loss minimization with regularization. Our algorithmic framework alternates between two phases. On each iteration we first perform an unconstrained gradient descent step. We then cast and solve an instantaneous optimization problem that trades off minimization of a regularization term while keeping close proximity to the result of the first phase. This yields a simple yet effective algorithm for both batch penalized risk minimization and online learning. Furthermore, the two phase approach enables sparse solutions when used in conjunction with regularization functions that promote sparsity, such as l1. We derive concrete and very simple algorithms for minimization of loss functions with l1, l2, l2, and l∞ regularization. We also show how to construct efficient algorithms for mixed-norm l1/lq regularization. We further extend the algorithms and give efficient implementations for very high-dimensional data with sparsity. We demonstrate the potential of the proposed framework in experiments with synthetic and natural datasets.
منابع مشابه
A Field Guide to Forward-Backward Splitting with a FASTA Implementation
Non-differentiable and constrained optimization play a key role in machine learning, signal and image processing, communications, and beyond. For highdimensional minimization problems involving large datasets or many unknowns, the forward-backward splitting method (also known as the proximal gradient method) provides a simple, yet practical solver. Despite its apparent simplicity, the performan...
متن کاملA Generalized Forward-Backward Splitting
This paper introduces a generalized forward-backward splitting algorithm for finding a zero of a sum of maximal monotone operators B + ∑n i=1 Ai, where B is cocoercive. It involves the computation of B in an explicit (forward) step and of the parallel computation of the resolvents of the Ai’s in a subsequent implicit (backward) step. We prove its convergence in infinite dimension, and robustnes...
متن کاملA Multi-step Inertial Forward-Backward Splitting Method for Non-convex Optimization
We propose a multi-step inertial Forward–Backward splitting algorithm for minimizing the sum of two non-necessarily convex functions, one of which is proper lower semi-continuous while the other is differentiable with a Lipschitz continuous gradient. We first prove global convergence of the algorithm with the help of the Kurdyka-Łojasiewicz property. Then, when the non-smooth part is also partl...
متن کاملProjective Splitting with Forward Steps: Asynchronous and Block-Iterative Operator Splitting
This work is concerned with the classical problem of finding a zero of a sum of maximal monotone operators. For the projective splitting framework recently proposed by Combettes and Eckstein, we show how to replace the fundamental subproblem calculation using a backward step with one based on two forward steps. The resulting algorithms have the same kind of coordination procedure and can be imp...
متن کاملForward and non-forward symplectic integrators in solving classical dynamics problems
Forward time step integrators are splitting algorithms with only positive splitting coefficients. When used in solving physical evolution equations, these positive coefficients correspond to positive time steps. Forward algorithms are essential for solving time-irreversible equations that cannot be evolved using backward time steps. However, forward integrators are also better in solving timere...
متن کاملJoint Segmentation and Shape Regularization With a Generalized Forward-Backward Algorithm
This paper presents a method for the simultaneous segmentation and regularization of a series of shapes from a corresponding sequence of images. Such series arise as time series of 2D images when considering video data, or as stacks of 2D images obtained by slicewise tomographic reconstruction. We first derive a model where the regularization of the shape signal is achieved by a total variation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009